Soft Computing Techniques in Solid Waste and Wastewater Management is a thorough guide to computational solutions for researchers working in solid waste and wastewater management operations. This book covers in-depth analysis of process variables, their effects on overall efficiencies, and optimal conditions and procedures to improve performance using soft computing techniques. These topics coupled with the systematic analyses described will help readers understand various techniques that can be effectively used to achieve the highest performance. In-depth case studies along with discussions on applications of various soft-computing techniques help readers control waste processes and come up with short-term, mid-term and long-term strategies.

Waste management is an increasingly important field due to rapidly increasing levels of waste production around the world. Numerous potential solutions for reducing waste production are underway, including applications of machine learning and computational studies on waste management processes. This book details the diverse approaches and techniques in these fields, providing a single source of information researchers and industry practitioners. It is ideal for academics, researchers and engineers in waste management, environmental science, environmental engineering and computing, with relation to environmental science and waste management. Provides a comprehensive reference on the implementation of soft computing techniques in waste management, drawing together current research and future implications Includes detailed algorithms used, enabling authors to understand and appreciate potential applications Presents relevant case studies in solid and wastewater management that show real-world applications of discussed technologies

Solid waste management affects every person in the world. By 2050, the world is expected to increase waste generation by 70 percent, from 2.01 billion tonnes of waste in 2016 to 3.40 billion tonnes of waste annually. Individuals and governments make decisions about consumption and waste management that affect the daily health, productivity, and cleanliness of communities. Poorly managed waste is contaminating the world’s oceans, clogging drains and causing flooding, transmitting diseases, increasing respiratory problems, harming animals that consume waste unknowingly, and affecting economic development.

Unmanaged and improperly managed waste from decades of economic growth requires urgent action at all levels of society. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 aggregates extensive solid waste data at the national and urban levels. It estimates and projects waste generation to 2030 and 2050. Beyond the core data metrics from waste generation to disposal, the report provides information on waste management costs, revenues, and tariffs; special wastes; regulations; public communication; administrative and operational models; and the informal sector. Solid waste management accounts for approximately 20 percent of municipal budgets in low-income countries and 10 percent of municipal budgets in middle-income countries, on average. Waste management is often under the jurisdiction of local authorities facing competing priorities and limited
resources and capacities in planning, contract management, and operational monitoring. These factors make sustainable waste management a complicated proposition; most low- and middle-income countries, and their respective cities, are struggling to address these challenges. Waste management data are critical to creating policy and planning for local contexts. Understanding how much waste is generated—especially with rapid urbanization and population growth—as well as the types of waste generated helps local governments to select appropriate management methods and plan for future demand. It allows governments to design a system with a suitable number of vehicles, establish efficient routes, set targets for diversion of waste, track progress, and adapt as consumption patterns change. With accurate data, governments can realistically allocate resources, assess relevant technologies, and consider strategic partners for service provision, such as the private sector or nongovernmental organizations. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 provides the most up-to-date information available to empower citizens and governments around the world to effectively address the pressing global crisis of waste. Additional information is available at http://www.worldbank.org/what-a-waste.

The Handbook of Environment and Waste Management, Volume 1, Air and Water Pollution Control, is a comprehensive compilation of topics that are at the forefront of many technical advances and practices in air and water pollution control. These include air pollution control, water pollution control, water treatment, wastewater treatment, industrial waste treatment and small scale wastewater treatment. Internationally recognized authorities in the field of environment and waste management contribute chapters in their areas of expertise. This handbook is an essential source of reference for professionals and researchers in the areas of air, water, and waste management, and as a text for advanced undergraduate and graduate courses in these fields.

Solid Waste Recycling and Processing, Second Edition, provides best-practice guidance to solid waste managers and recycling coordinators. The book covers all aspects of solid waste processing, volume reduction, and recycling, encompassing typical recyclable materials (paper, plastics, cans, and organics), construction and demolition debris, electronics, and more. It includes techniques, technologies, and programs to help maximize customer participation rates and revenues, as well as to minimize operating costs. The book is packed with lessons learned by the author during the implementation of the most successful programs worldwide, and includes numerous case studies showing how different systems work in different settings. This book also takes on industry debates such as the merits of curbside-sort versus single-stream recycling and the use of advanced technology in materials recovery facilities. It provides key facts and figures, and brief summaries of legislation in the United States, Europe, and Asia. An extensive glossary demystifies the terminology and acronyms used in different sectors and geographies. The author also explains emerging concepts in recycling such as zero waste, sustainability, LEED certification, and pay-as-you-throw, and places waste management and recycling in wider economic, environmental (sustainability), political, and societal contexts. Covers single- and mixed-waste streams Evaluates the technologies and tradeoffs of recycling of materials vs. integrated solutions, including combustion and other transformational options Covers recycling as part of the bigger picture of solid waste management, processing and disposal.
The book points out that rural regions need proper attention at the global level concerning solid waste management sector where bad practices and public health threats could be avoided through traditional and integrated waste management routes. Solid waste management in rural areas is a key issue in developing and transitioning countries due to the lack of proper waste management facilities and services. The book further examines, on the one hand, the main challenges in the development of reliable waste management practices across rural regions and, on the other hand, the concrete solutions and the new opportunities across the world in dealing with municipal and agricultural wastes. The book provides useful information for academics, various professionals, the members of civil society, and national and local authorities.

Strategic Perspectives in Solid Waste and Wastewater Management explores conventional and advanced biotechnologies for waste management, including socio-economic aspects, techno-economic feasibility, models and modeling tools, and a detailed life-cycle assessment approach in solid waste (SW) and wastewater (WW). These innovative technologies are highly applicable to current real-world situations. The enormous increase in the quantum and diversity of SW and WW - including waste materials generated due to human activity and their potentially harmful effects on the environment and public health - have led to increasing awareness about an urgent need to adopt novel technologies for appropriate management of both SW and WW. While there is an obvious need to minimize the generation of wastes and to reuse and recycle them, the technologies for managing such wastes can play a vital role in mitigating problems. Besides recovery of substantial energy, these technologies can lead to a considerable reduction in the overall waste quantities requiring final disposal, which can be better managed for safe disposal in a controlled manner while meeting pollution control standards. Outlines appropriate technologies for solid waste and wastewater management systems and their applications Presents and evaluates the Best Available Technology (BAT) and includes global case studies Provides methods for evaluating the way to use appropriate technological systems to develop the best technically and economically feasible projects worldwide Offers an excellent resource for university students to use for their research and dissertations

Handbook of Solid Waste Management and Waste Minimization Technologies is an essential tool for plant managers, process engineers, environmental consultants, and site remediation specialists that focuses on practices for handling a broad range of industrial solid waste problems. In addition to equipment and process options, the author presents information on waste minimization practices that can be used in conjunction with or can provide alternatives to equipment and process investments. Environmental cost accounting measures and energy-efficient technologies are provided. Valuable information for those concerned with meeting government regulations and with the economic considerations (such as fines for violations and cost-effective methods) is presented in a practical manner. Included in the text are sidebar discussions, questions for thinking and discussion, recommended resources for the reader (including Web sites), and a comprehensive glossary. Two companion books by Cheremisinoff are available: Handbook of Water and Wastewater Treatment Technologies, and Handbook of Air Pollution Control Technologies. Covers leading edge technology and standard equipment for managing industrial solid waste problems.
Valuable in meeting government regulations Presents in-depth analysis of the financial impact of alternative technologies available Hazardous Waste and Solid Waste covers the life of municipal solid waste, bulky (C&D) waste and hazardous waste. It provides in-depth coverage on all aspects of waste characterization, treatment, disposal, and recovery. The book identifies the sources of solid waste, provides general information of the quantities of waste generated and discarded, and examines the potential effects of solid waste on daily life and the environment. It also defines hazardous waste, and provides the criteria environmental engineers must use to determine if material is indeed a waste. The editors give attention to the unique problems of risk assessment, including the Hazard Ranking System and the National Priority List, and transport of hazardous materials. It addresses radioactivity individually, with sections devoted to the principles and sources of radioactivity, safety standards, detection, analysis, recovery, low-level radioactive waste, and high-level radioactive waste. The guide explores municipal waste reduction, material recovery and refuse-derived fuel within a catalog of options for solid waste. Hazardous and Solid Waste is an excellent fundamental resource for those involved in any aspect of waste management. Béla G. Lipták speaks on Post-Oil Energy Technology on the AT&T Tech Channel.

Environmental Engineering: Principles and Practice is written for advanced undergraduate and first-semester graduate courses in the subject. The text provides a clear and concise understanding of the major topic areas facing environmental professionals. For each topic, the theoretical principles are introduced, followed by numerous examples illustrating the process design approach. Practical, methodical and functional, this exciting new text provides knowledge and background, as well as opportunities for application, through problems and examples that facilitate understanding. Students pursuing the civil and environmental engineering curriculum will find this book accessible and will benefit from the emphasis on practical application. The text will also be of interest to students of chemical and mechanical engineering, where several environmental concepts are of interest, especially those on water and wastewater treatment, air pollution, and sustainability. Practicing engineers will find this book a valuable resource, since it covers the major environmental topics and provides numerous step-by-step examples to facilitate learning and problem-solving.

Environmental Engineering: Principles and Practice offers all the major topics, with a focus upon: • a robust problem-solving scheme introducing statistical analysis; • example problems with both US and SI units; • water and wastewater design; • sustainability; • public health. There is also a companion website with illustrations, problems and solutions. The collection, transportation and subsequent processing of waste materials is a vast field of study which incorporates technical, social, legal, economic, environmental and regulatory issues. Common waste management practices include landfilling, biological treatment, incineration, and recycling – all boasting advantages and disadvantages. Waste management has changed significantly over the past ten years, with an increased focus on integrated waste management and life-cycle assessment (LCA), with the aim of reducing the reliance on landfill with its obvious
environmental concerns in favour of greener solutions. With contributions from more than seventy internationally known experts presented in two volumes and backed by the International Waste Working Group and the International Solid Waste Association, detailed chapters cover: Waste Generation and Characterization Life Cycle Assessment of Waste Management Systems Waste Minimization Material Recycling Waste Collection Mechanical Treatment and Separation Thermal Treatment Biological Treatment Landfilling Special and Hazardous Waste Solid Waste Technology & Management is a balanced and detailed account of all aspects of municipal solid waste management, treatment and disposal, covering both engineering and management aspects with an overarching emphasis on the life-cycle approach. Solid waste was already a problem long before water and air pollution issues attracted public attention. Historically the problem associated with solid waste can be dated back to prehistoric days. Due to the invention of new products, technologies and services the quantity and quality of the waste have changed over the years. Waste characteristics not only depend on income, culture and geography but also on a society's economy and, situations like disasters that affect that economy. There was tremendous industrial activity in Europe during the industrial revolution. The twentieth century is recognized as the American Century and the twenty-first century is recognized as the Asian Century in which everyone wants to earn 'as much as possible'. After Asia the currently developing Africa could next take the center stage. With transitions in their economies many countries have also witnessed an explosion of waste quantities. Solid waste problems and approaches to tackling them vary from country to country. For example, while efforts are made to collect and dispose hospital waste through separate mechanisms in India it is burnt together with municipal solid waste in Sweden. While trans-boundary movement of waste has been addressed in numerous international agreements, it still reaches developing countries in many forms. While thousands of people depend on waste for their livelihood throughout the world, many others face problems due to poor waste management. In this context solid waste has not remained an issue to be tackled by the local urban bodies alone. It has become a subject of importance for engineers as well as doctors, psychologist, economists, and climate scientists and any others. There are huge changes in waste management in different parts of the world at different times in history. To address these issues, an effort has been made by the authors to combine their experience and bring together a new text book on the theory and practice of the subject covering the important relevant literature at the same time. Offering a comprehensive approach, this title covers fundamentals, technologies, and management of biological processing of solid waste. It discusses kinetic modeling and synergistic impact evolution during bioprocessing of solid waste, environmental impacts such as greenhouse gas emission from biological processing of solid waste, energy recovery from solid waste, and biodrying of solid waste. It also presents cases and challenges from different countries,
Get Free Solid Waste Engineering A Global Perspective Activate Learning With These New Titles From Engineering

successful business models, and economic analyses of various processing options. Aimed at researchers and industry professionals in solid and hazardous waste management, this title offers a wealth of knowledge to help readers understand this increasingly important area.

Readers gain the knowledge to address the growing and increasingly intricate problem of controlling and processing the refuse created by global urban societies with SOLID WASTE ENGINEERING: A GLOBAL PERSPECTIVE, 3E. While the authors prepare readers to deal with issues, such as regulations and legislation, the main emphasis throughout the book is on mastering solid waste engineering principles. The book first explains the basic principles of the field and then demonstrates through worked examples how readers can apply these principles in real world settings. Readers learn to think reflectively and logically about the problems and solutions in today's solid waste engineering. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

One of the big challenges that today's growing cities are coping with is the delivery of effective and sustainable waste management, together with a good sanitation. This volume provides a comprehensive presentation and overall picture of municipal solid waste management, including waste generation and characterization, waste reduction and recycling, waste collection and transfer and waste disposal. It analyses how these aspects are practiced in developing and developed countries. The traditional method of disposal – composting at different scales – is discussed, including the benefits of compost. 'Energy-from-waste-technologies' are amply discussed, with comparisons between developed and developing countries, and with parameters and conditions for successful operation of these technologies. Moreover, the construction and operational aspects of landfills – to maintain environmental safety and the health of the residents nearby – are described in depth. In addition to a chapter with case studies of several countries and cities in every continent, a special chapter is dedicated to municipal solid waste management in India, including legal provisions, financial resources, private participation and citizens' rights and obligations, and the status in three major cities. By presenting different elements that constitute a sustainable procedure, including the recovery of clean energy, this volume will serve as a guide to students in science and engineering and to key players in waste management services and policies.

As global waste generation increases at a rapid rate, there is a dire need for waste management practices such as collection, disposal, and recycling to protect from environmental pollution. However, developing countries generate two to three times more waste, resort to open dumps more often than developed countries, and are slower to integrate waste management standards. There is a need for studies that examine the waste generation and practices of countries that share similar economic backgrounds as they strive to implement successful waste management techniques. Sustainable Waste Management Challenges in Developing Countries is an essential reference source that discusses the challenges
and strategies of waste management practices and the unique waste issues faced by developing countries that prevent them from achieving the goal of integrated waste management. While highlighting topics including e-waste, transboundary movement, and consumption patterns, this book is ideally designed for policymakers, legislators, waste company managers, environmentalists, students, academicians, and municipal planners seeking current research on the global waste management problem.

This book is the second volume in a three-volume set on Solid Waste Engineering and Management. It focuses on sustainability, single waste stream processing, material recovery, plastic waste, marine litter, sludge disposal, restaurant waste recycling, sanitary landfills, landfill leachate collection, and landfill aftercare as it pertains to solid waste management. The volumes comprehensively discuss various contemporary issues associated with solid waste pollution management, impacts on the environmental and vulnerable human populations, and solutions to these problems.

Sustainability is a growing area of research in ecology, economics, environmental science, business, and cultural studies. Specifically, sustainable waste disposal and management is a growing concern as both solid and liquid wastes are rapidly expanding in direct correlation with population growth and improved economic conditions across regions. The Handbook of Research on Waste Management Techniques for Sustainability explores the topic of sustainable development in an era where domestic and municipal waste is becoming a concern for both human and environmental health. Highlighting a number of topics related to pollution, green initiatives, and waste reduction in both the public and private sector, this research-based publication is designed for use by environmental scientists, business executives, researchers, graduate-level students, and policymakers seeking the latest information on sustainability in business, medicine, agriculture, and society.

This book presents the application of system analysis techniques with case studies to help readers learn how the techniques can be applied, how the problems are solved, and which sustainable management strategies can be reached. In a world where waste incinerators are not an option and landfills are at over capacity, cities are hard pressed to find a solution to the problem of what to do with their solid waste. Handbook of Solid Waste Management, 2/e offers a solution. This handbook offers an integrated approach to the planning, design, and management of economical and environmentally responsible solid waste disposal system. Let twenty industry and government experts provide you with the tools to design a solid waste management system capable of disposing of waste in a cost-efficient and environmentally responsible manner. Focusing on the six primary functions of an integrated system--source reduction, toxicity reduction, recycling and reuse, composting, waste-to-energy combustion, and landfilling--they explore each technology and examine its problems, costs, and legal and social ramifications.

With reference to Delhi, India.

Solid Waste Landfilling: Concepts, Processes, Technology provides information on technologies that promote stabilization and
minimize environmental impacts in landfills. As the main challenges in waste management are the reduction and proper treatment of waste and the appropriate use of waste streams, the book satisfies the needs of a modern landfill, covering waste pre-treatment, in situ treatment, long-term behavior, closure, aftercare, environmental impact and sustainability. It is written for practitioners who need specific information on landfill construction and operation, but is also ideal for those concerned about the possible return of these sites to landscapes and their subsequent uses for future generations. Includes input by international contributors from a vast number of disciplines Provides worldwide approaches and technologies Showcases the interdisciplinary nature of the topic Focuses on sustainability, covering the lifecycle of landfills under the concept of minimizing environmental impact Presents knowledge of the legal framework and economic aspects of landfilling

Through Waste-to-Energy (WtE) technology, plants use waste as a renewable fuel to co-produce electricity, heating, and cooling for urban utilization. This professional book presents the latest developments in WtE technologies and their global applications. The first part of the book covers thermal treatment technologies, including combustion, novel gasification, plasma gasification, and pyrolysis. It then examines 35 real-world WtE case studies from around the world, analyzing technical information behind planning, execution, goals, and national strategies. Results through the years show the benefits of the technology through the life cycle of the products. The book also examines financial and environmental aspects.

A junior/senior-level introductory text aimed at civil and environmental engineers taking a basic introduction to Solid Waste Management. The text includes the latest 1990-1991 laws and regulations.

SOLID WASTE ENGINEERING is one of a handful of engineering textbooks to address the growing and increasingly intricate problem of controlling and processing the refuse created by our urban society. While the authors discuss issues such as regulations and legislation, their main emphasis is on solid waste engineering principles. They maintain their focus on principles by first explaining the basic principles of the field, then demonstrating how these principles are applied in real world settings through worked examples.

Waste: A Handbook for Management gives the broadest, most complete coverage of waste in our society. The book examines a wide range of waste streams, including: Household waste (compostable material, paper, glass, textiles, household chemicals, plastic, water, and e-waste) Industrial waste (metals, building materials, tires, medical, batteries, hazardous mining, and nuclear) Societal waste (ocean, military, and space) The future of landfills and incinerators Covering all the issues related to waste in one volume helps lead to comparisons, synergistic solutions, and a more informed society. In addition, the book offers the best ways of managing waste problems through recycling, incineration, landfill and other processes. Co-author Daniel Vallero interviewed on NBC's Today show for a segment on recycling Scientific and non-biased overviews will assist scientists, technicians, engineers, and government leaders Covers all main types of waste, including household, industrial, and societal Strong focus on management and recycling provides
This book covers in detail programs and technologies for converting traditionally landfilled solid wastes into energy through waste-to-energy projects. Modern Waste-to-Energy plants are being built around the world to reduce the levels of solid waste going into landfill sites and contribute to renewable energy and carbon reduction targets. The latest technologies have also reduced the pollution levels seen from early waste incineration plants by over 99%. With case studies from around the world, Rogoff and Screve provide an insight into the different approaches taken to the planning and implementation of WTE. The second edition includes coverage of the latest technologies and practical engineering challenges as well as an exploration of the economic and regulatory context for the development of WTE.

Originally published in 1991. The dilemma of solid and hazardous waste disposal in an environmentally safe manner has become a global problem. This book presents a modern approach to economic and operations research modelling in urban and regional waste management with an international perspective. Location and space economics are discussed along with transportation, technology, health hazards, capacity levels, political realities and the linkage with general global economic systems. The algorithms and models developed are then applied to two major cities in the world by way of case study example of the use of these systems.

Municipal solid waste (MSW) disposal is an ever-increasing problem in many parts of the world, especially in developing countries. To date, landfilling is still the preferred option for the disposal and management of MSW due to its low-cost operation. While this solution is advantageous from a cost perspective, it introduces a high level of potential pollutants which can be detrimental to the local environment. Control and Treatment of Landfill Leachate for Sanitary Waste Disposal presents research-based insights and solutions for the proper management and treatment of landfill leachate. Highlighting relevant topics on emerging technologies and treatment innovations for minimizing the environmental hazards of waste disposal, this innovative publication contributes to filling in many of the gaps that exist in the current literature available on leachate treatment. Waste authorities, solid waste management companies, landfill operators, legislators, environmentalists, graduate students, and researchers will find this publication beneficial to their professional and academic interests in the area of waste treatment and management.

Hazardous waste management is a complex, interdisciplinary field that continues to grow and change as global conditions change. Mastering this evolving and multifaceted field of study requires knowledge of the sources and generation of hazardous wastes, the scientific and engineering principles necessary to eliminate the threats they pose to people and the environment, the laws regulating their disposal, and the best or most cost-effective methods for dealing with them. Written for students with some background in engineering, this comprehensive, highly acclaimed text does not
only provide detailed instructions on how to solve hazardous waste problems but also guides students to think about ways to approach these problems. Each richly detailed, self-contained chapter ends with a set of discussion topics and problems. Case studies, with equations and design examples, are provided throughout the book to give students the chance to evaluate the effectiveness of different treatment and containment technologies.

This book covers a broad group of wastes, from biowaste to hazardous waste, but primarily the largest (by mass and volume) group of wastes that are not hazardous, but also are not inert, and are problematic for three major reasons: (1) they are difficult to manage because of their volume: usually they are used in civil engineering as a common fill etc., where they are exposed to environmental conditions almost the same way as at disposal sites; (2) they are not geochemically stable and in the different periods of environmental exposure undergo transformations that might add hazardous properties to the material that are not displayed when it is freshly generated; (3) many designers and researchers in different countries involved in waste management are often not aware of time-delayed adverse environmental impact of some large-volume waste, and also do not consider some positive properties that may extend the area of their environmentally beneficial application.

Solid Waste Engineering: A Global Perspective

This title includes a number of Open Access chapters. The twenty-first century world faces several enormous challenges: how to mitigate climate change, meet a growing energy demand without relying on fossil fuels, and manage the escalating quantities of solid waste generated by cities around the world. This compendium volume offers a viable solution to all three: using solid waste as a renewable resource. Intended for a wide audience ranging from engineers and academics to decision-makers in both the public and private sectors, this volume has
gathered together research into a range of technologies and methodologies. The editors, two well-published researchers at the top of their field, have selected articles that lay the foundation for this discussion. They have then included chapters for the following waste management scenarios: anaerobic digestion, composting, pyrolysis and chemical upgrading, incineration and carbonization, and gasification. Research has been included from around the world, representing potential international solutions to what are global challenges, as well as crucial implications for ongoing research in this important field of study.

In our rapidly urbanizing global society, solid waste management will be a key challenge facing all the world's cities. This title provides a fresh perspective and data on one of the biggest issues in urban development.

Solid waste disposal — especially after the Love Canal incident — has become the focus of public awareness and concern for pollution. This book provides a synthesis of existing knowledge on solid waste landfilling — with a focus on solving problems with landfill gas, managing leachate, and implementing environmentally secure operating procedures. It explores the fundamentals of solid waste decomposition, and considers how these influence landfill design, operational features, and improvements in overall site performance. Covers social, economic and technical factors associated with solid waste landfilling. Considers all environmental applications — especially water quality and the treatment of landfill generated gas. Presents methodologies for predicting landfill gas and leachate production. For engineers, hydrogeologists, and planners involved in the design and operations of landfills.

This book will focus on "Waste Management," a serious global issue and engineers' responsibility towards finding better solutions for its sustainable management. Solid waste management is one of the major environmental burdens in both developed and developing countries alike. An alarming rate of solid waste generation trends can be seen as a result of globalization, industrialization, and rapid economic development. However, low-income and marginalized sectors in society suffer most from the unfavorable conditions deriving from poor waste management. Solid waste management is not a mere technical challenge. The environmental impact, socio-economic, cultural, institutional, legal, and political aspects are fundamental in planning, designing, and maintaining a sustainable waste management system in any country. Engineers have a major role to play in designing proper systems that integrate stakeholders, waste system elements, and sustainability aspects of waste management. This book is part of a focused collection from a project on Engineering and Education for Social and Environmental Justice. It takes an explicitly social and environmental justice stance on waste and attempts to assess the social impact of waste management on those who are also the most economically vulnerable and least powerful in the society. We hope that this book will assist our readers to think critically and understand the framework of socially and environmentally just waste management.

Table of Contents:
Introduction / Towards a Just Politics of Waste Management / Expertise, Indigenous People, and the Site 41 Landfill / Waste Management in the Global North / Waste Management in the Global South: A Sri Lankan Case Study / Assessing the Feasibility of Waste for Life in the Western Province of Sri Lanka

This book contains detailed and structured approaches to tackling practical decision-making troubles using economic consideration and analytical methods in Municipal solid waste (MSW) management. Among all other types of environmental burdens, MSW management is still a mammoth task, and the worst part is that a suitable technique to curb the situation in developing countries has still not emerged. Municipal Solid Waste Management in Developing Countries will help fill this information gap based on information provided by field professionals. This information will be helpful to improve and manage solid waste systems through the application of modern management techniques. It covers all the fundamental concepts of MSWM; the various component systems, such as collection, transportation, processing, and disposal; and
their integration. This book also discusses various component technologies available for the treatment, processing, and disposal of MSW. Written in view of actual scenarios in developing countries, it provides knowledge to develop solutions for protracted problems in these nations. It is mainly for undergraduate and postgraduate students, research scholars, professionals, and policy makers.

Copyright: 0021bef2c85a1f0b5d42e6df39e0728a